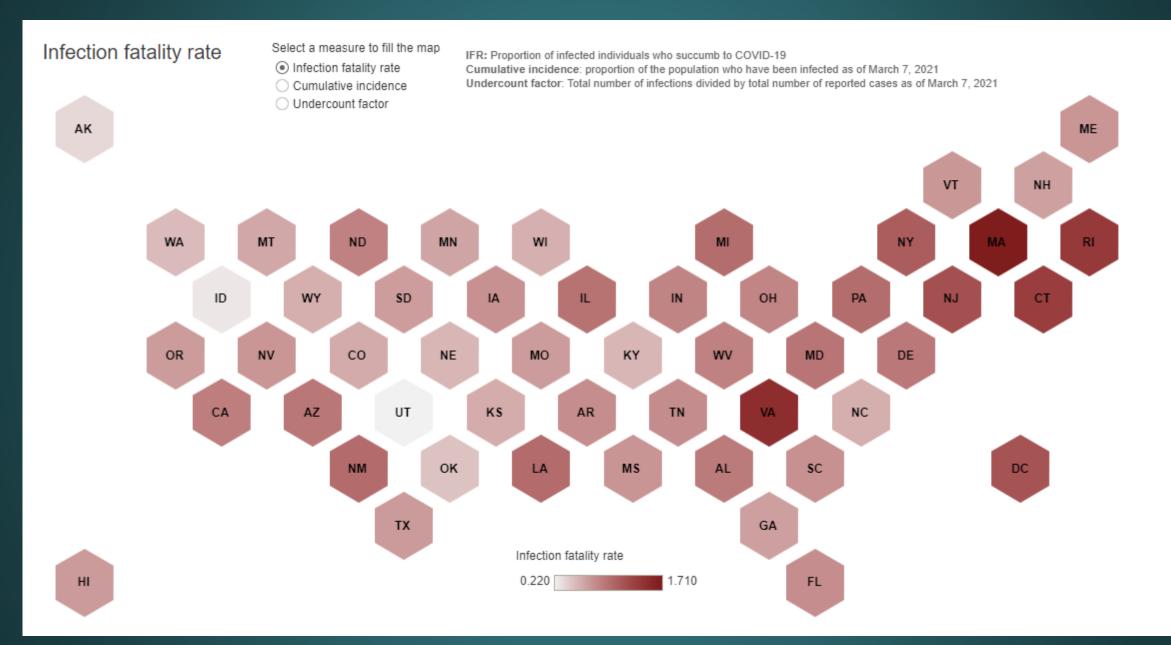
INFORMATION DESIGN: DATA VISUALIZATION BEST PRACTICES

WHO AM I AND WHAT DO I DO?

Introduction

Rebecca Bergh (she/her)

- Senior Staff Analyst at Boeing
- Instructional Assistant in the UW Continuum College
- @rebeccalgourley >


WHAT'S MY GOAL HERE TODAY?

PRESENTATION ROADMAP

- Before and afters
- 5 'rules' for data visualization design
- My data viz story
- How to get started
- Free tools
- Accessibility

HOW DATA CAN MAKE AN IMPACT ON STORYTELLING

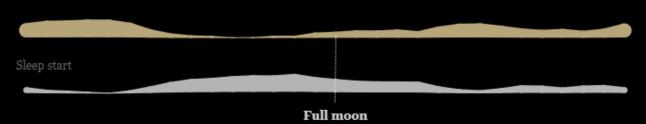
State	Infaction Fatality Pata	Compulative Incidence	Undersount Fester
State	Infection Fatality Rate	Cumulative Incidence	Undercount Factor
Alabama	0.90% (0.70-1.15)	24.0% (18.8-30.6)	2.4 (1.8-3.0)
Alaska	0.35% (0.28-0.43)	11.8% (10.1-14.2)	1.5 (1.3-1.8)
Arizona	0.93% (0.75-1.14)	24.5% (20.1-30.3)	2.2 (1.8-2.7)
Arkansas	0.78% (0.64-0.95)	23.2% (19.2-28.4)	2.2 (1.8-2.7)
California	0.88% (0.70-1.09)	16.9% (13.6-20.9)	1.9 (1.6-2.4)
Colorado	0.60% (0.49-0.71)	17.2% (14.6-20.9)	2.3 (2.0-2.8)
Connecticut	1.37% (1.10-1.70)	15.9% (12.9-19.9)	2.0 (1.6-2.5)
Delaware	0.92% (0.74-1.13)	17.0% (14.0-21.0)	1.9 (1.6-2.3)
Florida	0.78% (0.64-0.94)	19.5% (16.3-23.8)	2.2 (1.9-2.8)
Georgia	0.67% (0.54-0.82)	25.9% (21.4-32.0)	2.7 (2.2-3.4)
Hawaii	0.70% (0.54-0.91)	4.6% (3.6-5.8)	2.3 (1.8-2.9)
Idaho	0.28% (0.23-0.33)	37.8% (32.1-45.9)	4.0 (3.4-4.8)
Illinois	0.96% (0.78-1.16)	19.3% (16.1-23.7)	2.0 (1.7-2.5)
Indiana	0.84% (0.70-1.00)	22.9% (19.2-27.6)	2.3 (1.9-2.8)
lowa	0.76% (0.61-0.97)	23.6% (18.7-29.5)	2.6 (2.1-3.3)
Kansas	0.59% (0.47-0.75)	28.6% (22.6-36.1)	2.8 (2.2-3.5)
Kentucky	0.53% (0.43-0.63)	21.4% (18.0-25.8)	2.3 (2.0-2.8)
Louisiana	1.01% (0.82-1.22)	21.1% (17.5-26.1)	2.3 (1.9-2.8)
Maine	0.73% (0.60-0.87)	7.3% (6.2-8.8)	2.1 (1.8-2.6)
Maryland	0.94% (0.77-1.15)	13.9% (11.5-17.1)	2.2 (1.8-2.7)
Massachusetts	1.71% (1.36-2.13)	14.4% (11.6-18.0)	1.7 (1.4-2.1)
Michigan	1.00% (0.77-1.29)	17.1% (13.3-22.1)	2.6 (2.0-3.4)
Minnesota	0.64% (0.52-0.76)	18.4% (15.4-22.4)	2.1 (1.8-2.6)
Mississippi	0.74% (0.61-0.89)	31.6% (26.6-38.6)	3.2 (2.7-3.9)
Missouri	0.69% (0.55-0.87)	19.6% (15.8-24.7)	2.5 (2.0-3.2)
Montana	0.62% (0.50-0.75)	21.0% (17.5-25.5)	2.3 (1.9-2.8)
Nebraska	0.53% (0.43-0.64)	21.1% (17.7-25.7)	2.0 (1.7-2.5)
Nevada	0.73% (0.59-0.87)	22.5% (18.8-27.5)	2.4 (2.0-2.9)
New Hampshire	0.66% (0.54-0.79)	13.4% (11.3-16.2)	2.4 (2.0-2.9)
New Jersey	1.22% (0.97-1.53)	22.2% (17.7-28.0)	2.4 (1.9-3.1)
New Mexico	1.01% (0.83-1.21)	18.6% (15.6-22.7)	2.1 (1.8-2.5)
New York	1.12% (0.87-1.42)	18.6% (14.7-23.9)	2.1 (1.7-2.8)
North Carolina	0.58% (0.48-0.68)	19.4% (16.5-23.4)	2.4 (2.0-2.8)
North Dakota	0.86% (0.71-1.03)	22.4% (19.0-27.1)	1.7 (1.4-2.0)
Ohio	0.83% (0.68-1.03)	19.5% (15.9-23.7)	2.3 (1.9-2.9)
Oklahoma	0.47% (0.38-0.56)	25.1% (21.1-30.6)	2.3 (1.9-2.8)
Oregon	0.69% (0.55-0.85)	8.2% (6.7-10.0)	2.2 (1.8-2.8)
Pennsylvania	1.00% (0.82-1.19)	19.4% (16.4-23.7)	2.6 (2.2-3.2)
Rhode Island	1.41% (1.14-1.72)	17.4% (14.3-21.4)	1.4 (1.2-1.8)
South Carolina	0.76% (0.63-0.91)	23.0% (19.4-28.0)	2.3 (1.9-2.8)
South Dakota	0.68% (0.56-0.82)	31.2% (26.1-37.9)	2.5 (2.1-3.0)
Tennessee	0.79% (0.64-0.97)	21.8% (17.7-26.9)	1.9 (1.6-2.4)
Texas	0.70% (0.57-0.85)	22.7% (18.8-27.8)	2.5 (2.1-3.0)
Utah	0.22% (0.18-0.26)	28.0% (23.8-33.7)	2.5 (2.1-3.0)
Vermont	0.72% (0.57-0.92)	4.6% (3.8-5.6)	1.8 (1.5-2.2)
Virginia	1.53% (1.09-2.36)	8.3% (5.5-11.7)	1.2 (0.8-1.7)
Washington	0.51% (0.41-0.64)	12.9% (10.3-16.1)	2.9 (2.3-3.6)
West Virginia	0.86% (0.71-1.01)	15.4% (13.2-18.5)	2.0 (1.8-2.5)
Wisconsin	0.57% (0.46-0.69)	21.5% (17.9-26.6)	2.0 (1.7-2.5)
Wyoming	0.58% (0.46-0.71)	21.0% (17.3-25.9)	2.2 (1.8-2.7)
Washington, D.C.	1.19% (0.94-1.49)	12.2% (9.8-15.3)	2.1 (1.7-2.7)

Group	DayinCycle_m a	Duration_mea n	Duration_med ian		Onset mean	Onset median	Onset sem
Rural limited light	0	487.6107	490.7143	6.216443	147.9393	144.3571	5.620017
Rural limited light	1	492.6321	494.8214	5.526152	143.1214	143.0357	5.911505
Rural limited light	2	491.9095	490.1071	5.98482	144.6369	145	5.881448
Rural limited light	3	493.2613	494.8571	5.425634	142.9619	145	6.363351
Rural limited light	4	482.4714	483.75	7.033718	147.6268	140	6.46298
Rural limited light	5	487.1536	489.4286	6.433719	143.3625	136.5357	6.413114
Rural limited light	6	497.1542	502.3929	6.438085	134.7726	128.4643	6.204632
Rural limited light	7	499.8911	507.7857	7.511736	130.8357	123.5357	6.52986
Rural limited light	8	498.2387	509.5714	8.441629	133.4726	125.25	6.40143
Rural limited light	9	496.1208	506.2857	9.415579	133.8524	124.8929	6.584896
Rural limited light	10	493.5583	496.5714	8.944772	136.6774	131.1071	5.688358
Rural limited light	11	502.7982	503.2143	9.895693	128.2911	131.25	6.388764
Rural limited light	12	501.7089	503.2143	8.70312	128.7625	129.4286	6.409602
Rural limited light	13	500.394	501.3929	8.280832	131.6881	132.1786	6.257504
Rural limited light	14	506.7	509.75	8.476082	128.8321	130.75	6.810787
Rural limited light	15	503.0917	498.3571	7.611194	128.856	134.6071	7.435988
Rural limited light	16	501.0339	501.875	7.848023	128.4714	138.3929	7.512363
Rural limited light	17	501.4268	503.8214	7.37299	123.625	130.2143	7.206018
Rural limited light	18	498.7732	492.5357	8.30663	122.7429	126.25	6.634013
Rural limited light	19	498.2018	488.6429	8.903228	120.7143	128.4286	5.961357
Rural limited light	20	497.1446	497.3393	7.369486	122.8	128.1786	6.405048
Rural limited light	21	489.7482	493.1429	6.90089	126.9536	128.1786	5.985884
Rural limited light	22	485.4179	489.1429	5.75989	134.2607	139.4643	5.484627
Rural limited light	23	486.8446	489.7857	5.110014	139.2214	142.1071	6.144732
Rural limited light	24	485.5446	485.8214	5.692828	145.2393	144.0714	5.395291
Rural limited light	25	486.4089	483.3214	5.508875	147.7964	148.4643	5.624027
Rural limited light	26	486.8482	489.1071	5.906097	150.4571	150.8929	5.192801
Rural limited light	27	490.3268	491.3929	6.801881	150.7929	153.4643	5.702707
Rural limited light	28	489.4911	486.0714	6.839911	153.5071	153.5714	5.665191
Rural limited light	29	489.1821	488.75	5.983159	150.1786	151.4286	6.110637
Rural no light	0	501.1149	510.0714	8.06324	132.4565	125.7143	8.917629
Rural no light	1	500.5932	507.9286	7.841553	131.5652	120.7143	8.992683
Rural no light	2	500.7795	504.6429	7.898514	127.7422	117.0714	8.754408
Rural no light	3	502.7516	504.2857	7.929216	129.3106	119.7143	8.083236
Rural no light	4	508.0373	514	7.317479	123.7143	115.5714	7.183407

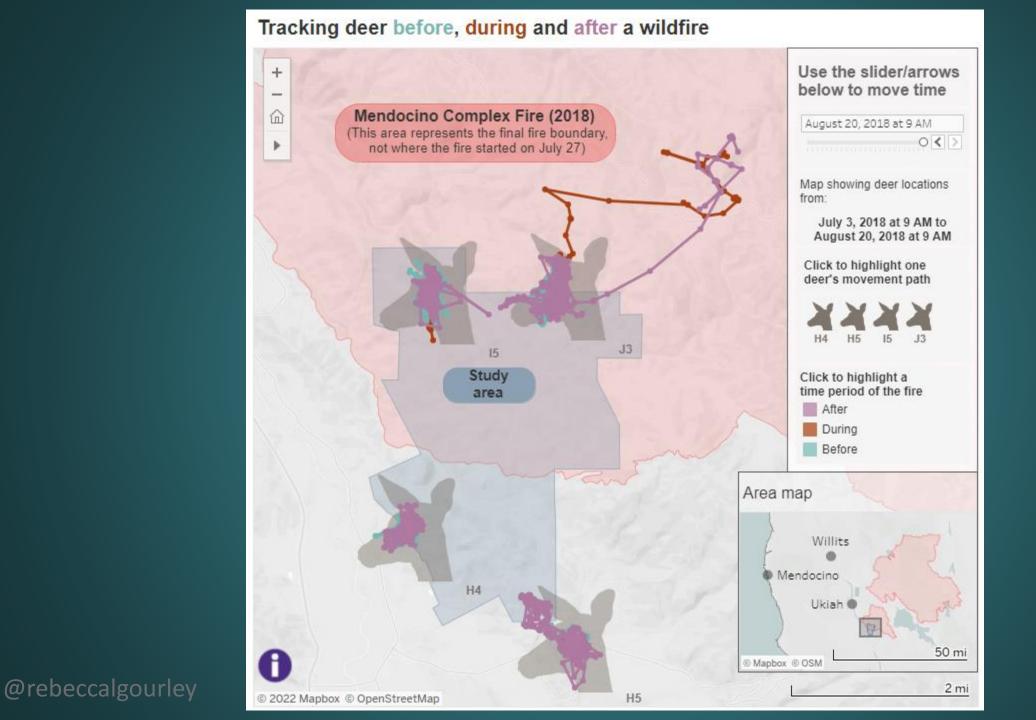
Lunar cycle and sleep

Radial cycle

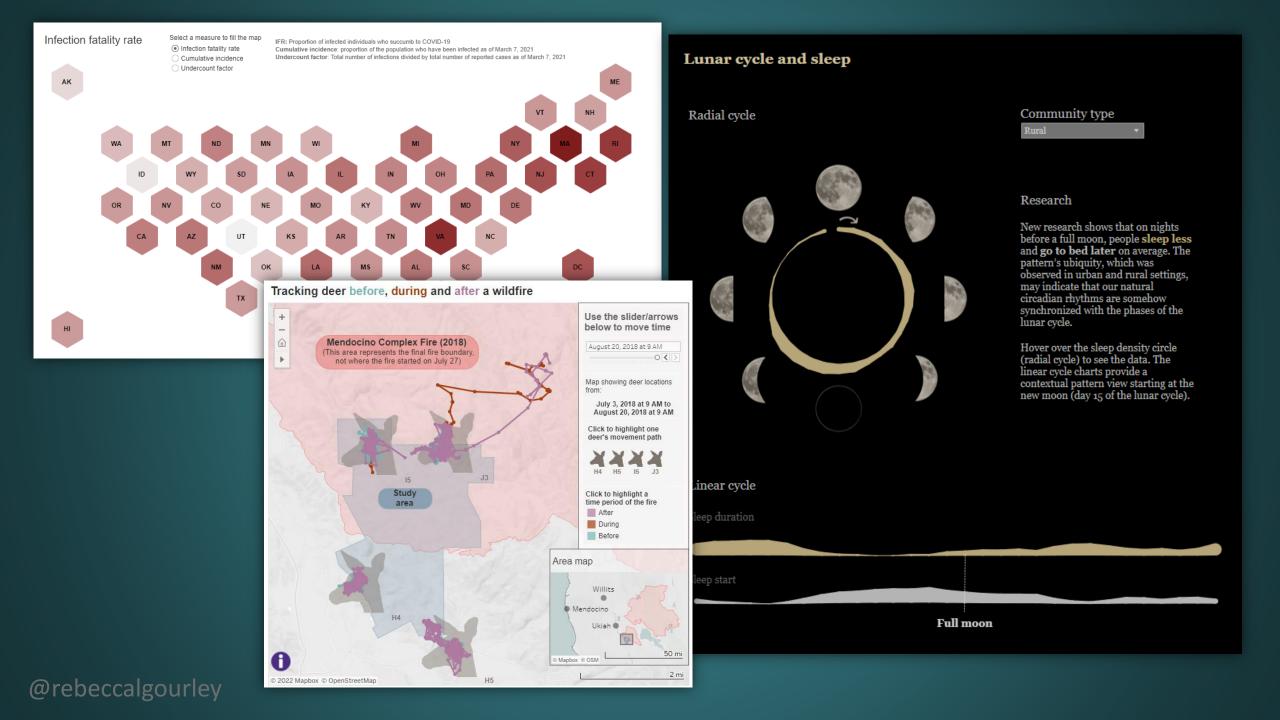
Community type


Research

New research shows that on nights before a full moon, people sleep less and go to bed later on average. The pattern's ubiquity, which was observed in urban and rural settings, may indicate that our natural circadian rhythms are somehow synchronized with the phases of the lunar cycle.

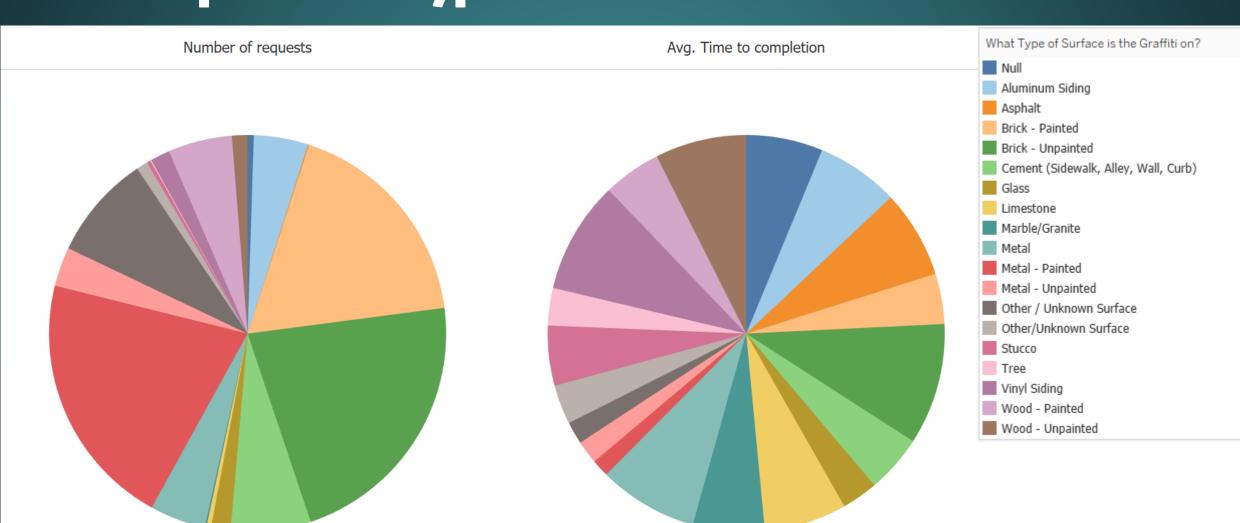

Hover over the sleep density circle (radial cycle) to see the data. The linear cycle charts provide a contextual pattern view starting at the new moon (day 15 of the lunar cycle).

Linear cycle

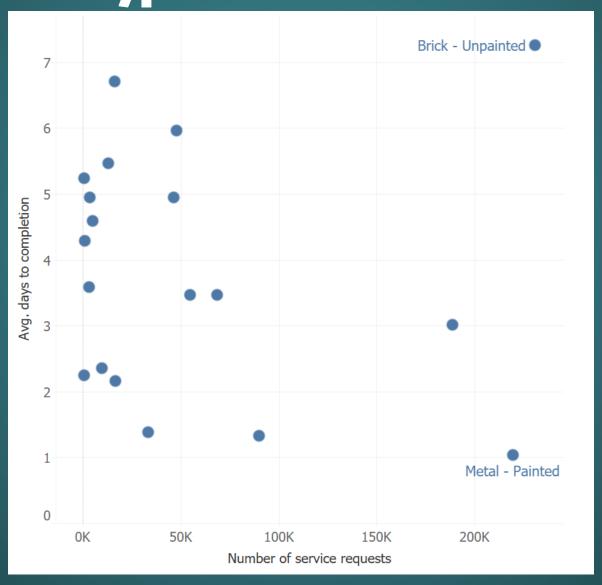

Sleep duration

a charalte	Later de				
AnimalID J3	39.0353			Time Stamp Time Period 7/4/2018 23:00 Pre	
J3	39.03523				
J3	39.03498				
J3	39.03501				
J3	39.0352				
J3	39.03527				
J3	39.03518				
J3	39.03522				
J3	39.03549				
J3	39.0355				
J3	39.03567	-123.069	7/4/2018	7/4/2018 13:00 Pre	
J3	39.03575	-123.068	7/4/2018		
J3	39.03552	-123.069	7/4/2018	7/4/2018 11:00 Pre	
J3	39.03562	-123.069	7/4/2018	7/4/2018 10:00 Pre	
J3	39.03487	-123.07	7/4/2018	7/4/2018 9:00 Pre	
J3	39.03493	-123.07	7/4/2018	7/4/2018 8:00 Pre	
J3	39.0376	-123.066	7/5/2018	7/5/2018 23:00 Pre	
J3	39.03748	-123.066	7/5/2018	7/5/2018 22:00 Pre	
J3	39.03761	-123.066	7/5/2018	7/5/2018 21:00 Pre	
J3	39.0375				
J3	39.03491	-123.065			
J3	39.03446				
J3	39.03448				
J3	39.03422				
J3	39.03423				
J3	39.0342				
J3	39.03418				
J3	39.03509				
J3	39.03467				
J3	39.03522				
J3	39.03542				
J3	39.03552				
J3	39.03535 39.03535				
J3	39.0353				
J3	39.03555				
J3	39.03552				
J3	39.03551				
J3	39.03552				
J3	39.03537				
J3	39.03766				
J3	39.03762				
J3	39.03781				
J3	39.03763				
J3	39.03778				

ARE YOU SEEING A PATTERN?


5 'RULES' OF DATA VIZ DESIGN

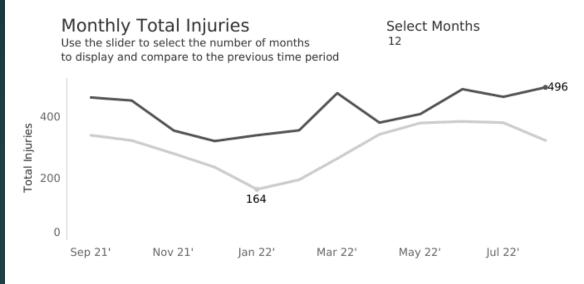
1


ALWAYS THINK ABOUT WHAT YOUR AUDIENCE NEEDS TO LEARN BY VIEWING AND/OR INTERACTING WITH YOUR VIZ

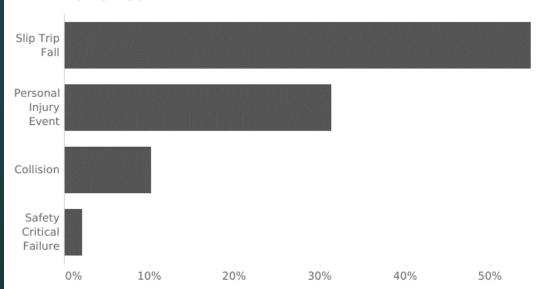

BONUS: HOW CAN I MAKE IT EASY AND FAST FOR THEM TO DO SO?

Example: Chart type

Example: Chart type



START WITH A WIREFRAME



'GET IT RIGHT IN BLACK AND WHITE'

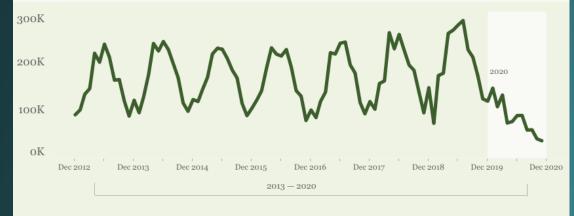
London Bus Safety | 2022

Injury Types

Total Injuries **137**

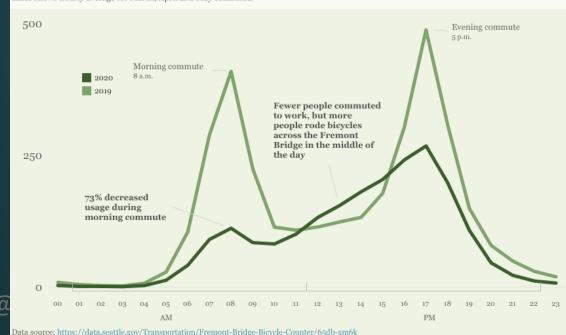
Top boroughs

Use the slider to filter boroughs by total inju.. 33


ADD MORE WHITE SPACE

FREMONT BRIDGE BICYCLE TRAFFIC

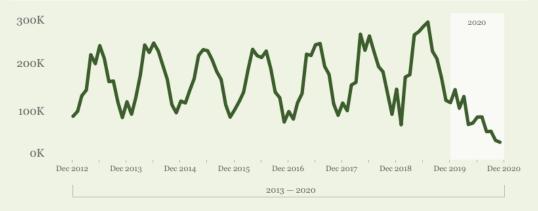
On a typical day in the spring months, more than **118 people on average** ride a bike across the Fremont Bridge **every hour**, with peak times at **8 a.m.** and **5 p.m.**


That changed in 2020.

Overall, the number of bikes riding across the Fremont Bridge decreased by 57% from 2019 to 2020.

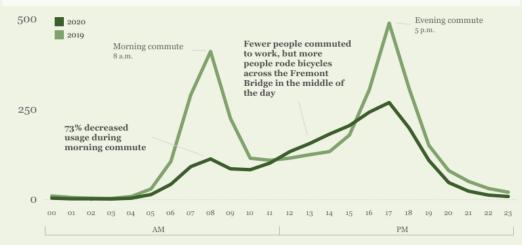
The overall usage of the bridge by bicyclists may have gone down but the people that did use it broke a 7-year commuter pattern for the **spring months**.

Lines shows hourly average for March, April and May combined.



FREMONT BRIDGE BICYCLE TRAFFIC

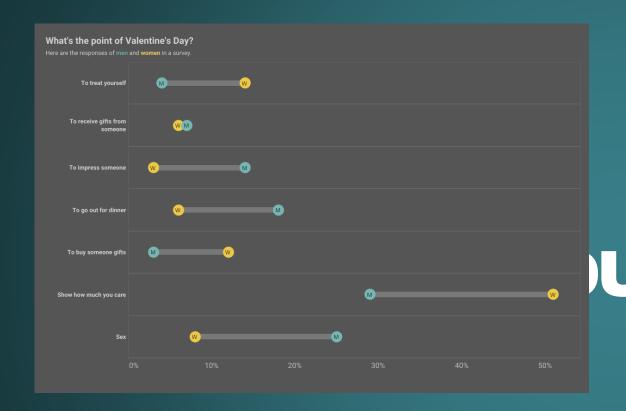
On a typical day in the spring months, more than **118 people on average** ride a bike across the Fremont Bridge **every hour**, with peak times at **8 a.m.** and **5 p.m.**

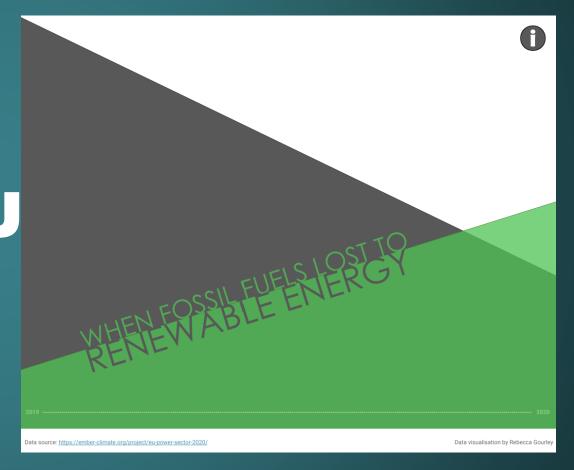

That changed in 2020.

Overall, the number of bikes riding across the Fremont Bridge decreased by 57% from 2019 to 2020.

The overall usage of the bridge by bicyclists may have gone down but the people that did use it broke a 7-year commuter pattern for the **spring months**.

Lines shows hourly average for March, April and May combined.



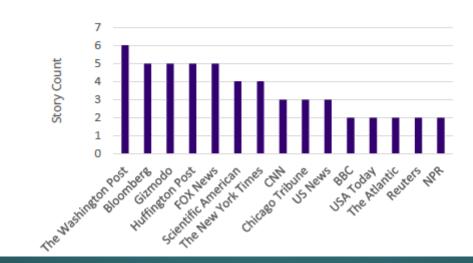

Data source: https://data.seattle.gov/Transportation/Fremont-Bridge-Bicycle-Counter/65db-xm6k

INSTEAD OF ASKING: 'WHAT SHOULD I ADD?' TRY: 'WHAT CAN I TAKE AWAY?'

BONUS: ASK FOR FEEDBACK AND ITERATE

MY FIRST VISUALIZATION

MY FIRST VISUALIZATION

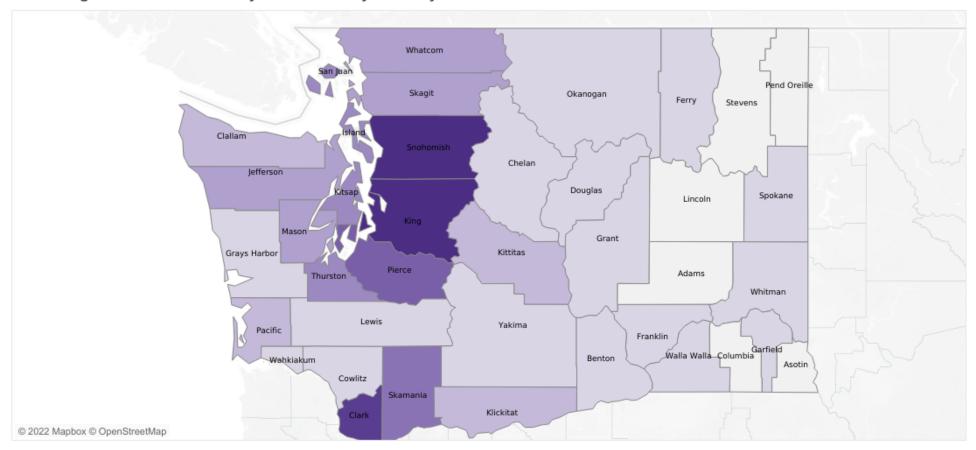

- > Year: 2015
- > Time spent: 1.5 hours (at least!)
- > Result:

TOP NATIONAL AND INTERNATIONAL OUTLETS

The New York Times

The Atlantic Senters FOX News Fox News

Scientific American



HOW I GOT HOOKED

HOW I GOT HOOKED

- > Year: 2017
- > Story: Self-Sufficiency Standard
- > Problem: MASSIVE dataset
 - 24 columns and 33,000+ rows
- > "I feel like this could be a map..."

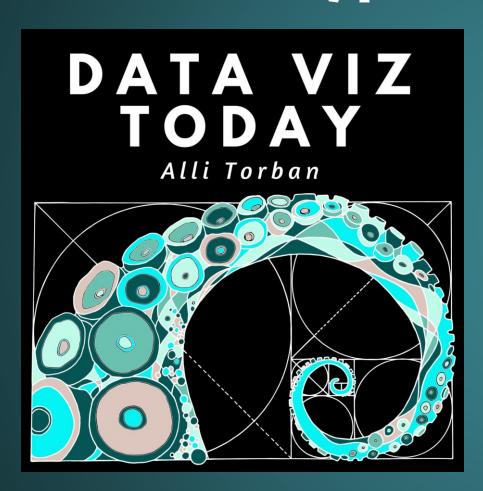
Washington Self-Sufficiency Standard by County

Family of 1 adult: Self-sufficiency wage

\$7.85

The 2017 Self-Sufficiency Standard for the state of Washington identifies the amount of income needed to support families of various sizes without additional help from the government, community or other personal resources.

*Note: Data for King, Snohomish, Kitsap, Pierce and Benton counties are an average of multiple sections of those counties.


HOW TO GET STARTED

Challenges:

- > <u>Makeover Monday</u>
- > Diversity in Data
- > Workout Wednesday

And so many more!

Data Viz Today podcast

Alli Torban, host and data viz designer

Since 2018

She asks every guest "What's your advice to data viz designers just starting out?"

Advice:

Be observant on your commutes via train and roads. Flip through magazines, look at colors, pattern styles in shopping malls and on the internet. Inspiration is everywhere. So, seek inspiration. Create and share.

—Pooja Gandhi

Advice:

Find a challenge to tackle. Figure out tools on the fly as you need them.

—Lisa Charlotte Rost

Advice:

Practice, practice, practice and then practice some more. It takes a while to build up muscle memory needed to know what chart types to use and what types of analysis makes the most sense for the data and the audience. If you are relentless in practicing, your work will show the results. And while practicing, accepting feedback is of the utmost importance, you cannot improve your skills in a bubble. So, seek out feedback and accept it.

—Adam Crahen

Advice:

Always remember the audience that you're designing for and what you want to achieve with your data visualization. Experiment and iterate and judge your designs based on the goals you want to achieve.

—Jane Pong

Advice:

First learn to sketch. Second, consult with your audience. That has to be what separates excellent and powerful data visualization from data viz that flops. How do you even know that your visualizations are effective if you don't know how they are perceived? The best measure of effectiveness is how well your audience actually understands the message.

—Frank Elavsky

FREE TOOLS

(A FEW) FREE TOOLS

- > Tableau Public
- > Datawrapper
- > Flourish.studio
- > ArcGIS storymaps*
- > Looker (formerly Google Data Studio)

ACCESSIBILITY

THINGS TO KEEP IN MIND FOR ACCESSIBILITY

- > Screenreader access
- > Colorblind-friendly palettes
- > Alt text on images
- > High contrast shading
- > No tiny fonts

MORE EXAMPLES

- > Simple datawrapper chart
- > Map that gives sense of proximity
- > More complex maps and charts
- > Circular chart to show cyclical data
- > Interactive 'Anatomy of a cherry tree'

Even more examples: bit.ly/Uwinteractives

My Tableau Public profile:

https://public.tableau.com/app/profile/rebecca.gourley6411/

Other people to follow on Twitter

QUESTIONS?