
158    CHAPTER 6    Applications of Newton’s Laws 

Someone at the other end of the table asks you to pass the salt. Feeling quite dashing, you slide the 50.0-g salt shaker in 
that direction, giving it an initial speed of 1.15 m>s. (a) If the shaker comes to rest with constant acceleration in 0.840 m, 
what is the coefficient of kinetic friction between the shaker and the table? (b) How much time is required for the shaker 
to come to rest if you slide it with an initial speed of 1.32 m>s?

PICTURE THE PROBLEM
We choose the positive x direction to be the direction of motion, and 
the positive y direction to be upward. Two forces act in the y direc-
tion: the shaker’s weight, W 

>
= -Wyn = -mgyn , and the normal force, 

N 
>

= Nyn . Only one force acts in the x direction: the force of kinetic 
friction, f 

>
k = -mkNxn . Notice that the shaker moves through a dis-

tance of 0.840 m with an initial speed v0x = 1.15 m>s.

REASONING AND STRATEGY

a.	 The frictional force has a magnitude of ƒk = mkN, and hence it fol-
lows that mk = ƒk>N. Therefore, we need to find the magnitudes of 
the frictional force, ƒk, and the normal force, N, to determine mk. 
To find ƒk we set gFx = max, and find ax with the kinematic equa-
tion vx 

2 = v0x 

2 + 2ax∆x. To find N we set ay = 0 (since there is no 
motion in the y direction) and solve for N using gFy = may = 0.

b.	 The coefficient of kinetic friction is independent of the sliding 
speed, and hence the acceleration of the shaker is also indepen-
dent of the speed. As a result, we can use the acceleration from part 
(a) in the equation vx = v0x + axt  to find the sliding time.

Known	 �Mass of salt shaker, m = 50.0 g; initial speed, v0 = 1.15 m>s 
or 1.32 m>s; sliding distance, ∆x = 0.840 m.

Unknown	 (a) Coefficient of kinetic friction, mk = ? (b) Time to come to rest, t = ?

SOLUTION

Part (a)

1.	 Set gFx = max to find ƒk in terms of ax:	 aFx = -ƒk = max  or  ƒk = -max

2.	 Determine ax by using the kinematic equation 
relating velocity to position, vx 

2 = v0x 

2 + 2ax∆x: 

3.	 Set gFy = may = 0 to find the normal force, N:	 aFy = N + 1-W2 = may = 0  or  N = W = mg

4.	 Substitute N = mg  and ƒk = -max (with  
ax = -0.787 m>s2) into mk = ƒk>N  to find mk: 

Part (b)

5.	 Use ax = -0.787 m>s2, v0x = 1.32 m>s, and vx = 0 in 	 vx = v0x + axt   or 
vx = v0x + axt  to solve for the time, t:

INSIGHT
Notice that m canceled in Step 4, so our result for the coefficient of friction is independent of the shaker’s mass. For ex-
ample, if we were to slide a shaker with twice the mass, but with the same initial speed, it would slide the same distance. 
It’s unlikely this independence would have been apparent if we had worked the problem numerically rather than sym-
bolically. Part (b) shows that the same comments apply to the sliding time—it too is independent of the shaker’s mass.

vx 

2 = v0x 

2 + 2ax∆x

ax =
vx 

2 - v0x 

2

2∆x
=

0 - 11.15 m>s22

210.840 m2 = -0.787 m>s2

mk =
ƒk

N
=

-max

mg
=

-ax

g
=

-1-0.787 m>s22
9.81 m>s2 = 0.0802

t =
vx - v0x

ax
=

0 - 11.32 m>s2
-0.787 m>s2 = 1.68 s

CONTINUED

a larger area of contact doesn’t produce a larger force? One way to think about this is to 
consider that when the area of contact is large, the normal force is spread out over a large 
area, giving a small force per area, F>A. As a result, the microscopic hills and valleys are 
not pressed too deeply against one another. On the other hand, if the area is small, the 
normal force is concentrated in a small region, which presses the surfaces together more 
firmly, due to the large force per area. The net effect is roughly the same in either case.

The next Example considers a commonly encountered situation in which kinetic 
friction plays a decisive role.

EXAMPLE 6-1	 PASS THE SALT—PLEASE

N
>

N
>

W
>

W
>

fk

>

fk

>

v0x =  1.15 m>s v =  0

0.840 m

Physical picture

x

y

x

y
Free-body
diagram

P R O B L E M - S O L V I N G  N O T E

Choice of Coordinate System: Incline

On an incline, align one axis 1x2 paral-
lel to the surface, and the other axis 1y2 
perpendicular to the surface. That way 
the motion is in the x direction. Since no 
motion occurs in the y direction, we know 
that ay = 0.
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6-1  Frictional Forces    159

A trained sea lion slides from rest with constant acceleration down a 3.0-m-long ramp into a pool of water. If the ramp is 
inclined at an angle of u = 23° above the horizontal and the coefficient of kinetic friction between the sea lion and the 
ramp is 0.26, how much time does it take for the sea lion to make a splash in the pool?

PICTURE THE PROBLEM
As is usual with inclined surfaces, we choose one axis to be parallel to the surface and the other to be perpendicular to it. 
In our sketch, the sea lion accelerates in the positive x direction 1ax 7 02, having started from rest, v0x = 0. We are free 
to choose the initial position of the sea lion to be x0 = 0. There is no motion in the y direction, and therefore ay = 0. 
Finally, we note from the free-body diagram that N 

>
= Nyn , f 

>
k = -mkNxn , and W 

>
= 1mg sin u2xn + 1-mg cos u2yn .

REASONING AND STRATEGY
We can use the kinematic equation relating position to time, x = x0 + v0xt + 1

2axt2, to find the time of the sea lion’s 
slide. It will be necessary, however, to first determine the acceleration of the sea lion in the x direction, ax.

To find ax we apply Newton’s second law to the sea lion. First, we can find N by setting gFy = may equal to zero 
(since ay = 0). It is important to start by finding N because we need it to find the force of kinetic friction, ƒk = mkN. 
Using ƒk in the sum of forces in the x direction, gFx = max, allows us to solve for ax and, finally, for the time.

Known	 Length of ramp, x = 3.0 m; angle of incline, u = 23°; coefficient of kinetic friction, mk = 0.26.
Unknown	 Sliding time, t = ?

SOLUTION

1.	 We begin by resolving each of the three force vectors 	  
into x and y components: 

2.	 Set gFy = may = 0 to find N.	 aFy = N - mg cos u = may = 0  
We see that N is less than the weight, mg:	 N = mg cos u

3.	 Next, set gFx = max.	 aFx = mg sin u - ƒk

	 Notice that the mass cancels in this equation:	 = mg sin u - mkmg cos u = max

4.	 Solve for the acceleration in the x direction, ax:	  ax = g1sin u - mk cos u2
		   = 19.81 m>s223sin 23° - 10.262 cos 23°4
		   = 1.5 m>s2

CONTINUED

 Nx = 0   Ny = N

 ƒk,x = -ƒk = -mkN   ƒk,y = 0

 Wx = mg sin u   Wy = -mg cos u

In the next Example, the system is inclined at an angle u relative to the horizontal. 
As a result, the normal force responsible for the kinetic friction is less than the weight 
of the object.

EXAMPLE 6-2	 MAKING A BIG SPLASH

PRACTICE PROBLEM
Given an initial speed of 1.15 m>s and a coefficient of kinetic friction equal to 0.120, what are (a) the acceleration of the 
shaker and (b) the distance it slides?    [Answer: (a) ax = -1.18 m>s2, (b) 0.560 m]

Some related homework problems: Problem 3, Problem 13
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mg sin u
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Conceptual Example 6-12 shows that the tension in the string is less than m2 g. 
Let’s rewrite our solution for T from Example 6-13 to show that this is indeed the case. 
We have

	 T = a m1m2

m1 + m2
bg = a m1

m1 + m2
bm2g

Noting that the ratio m1>1m1 + m22 is always less than 1 (as long as m2 is nonzero), it 
follows that T 6 m2g, as expected.

A Method for Measuring the Acceleration due to Gravity  We conclude this section 
with a classic system that can be used to measure the acceleration due to gravity. It is 
referred to as Atwood’s machine, and it is basically two blocks of different mass con-
nected by a string that passes over a pulley. The resulting acceleration of the blocks is 
related to the acceleration due to gravity by a relatively simple expression, which we 
derive in the following Example.

Known	 Symbolic masses of the blocks, m1, m2.
Unknown	 (a) Acceleration of the blocks, a = ? (b) Tension in the string, T = ?

SOLUTION

Part (a)

1.	 First, write gF1,x = m1a. Note that the only force	 aF1,x = T = m1a 
acting on m1 in the x direction is T:	 T = m1a

2.	 Next, write gF2,x = m2a. In this case, two forces 	 aF2,x = m2 g - T = m2a 
act in the x direction: W2 = m2g  (positive direction) 	 m2g - T = m2a 
and T (negative direction):

3.	 Sum the two relationships obtained to eliminate T:

	

4.	 Solve for a:	 a = a m2

m1 + m2
bg

Part (b)

5.	 Substitute a into the first equation 1T = m1a2	 T = m1a = a m1m2

m1 + m2
bg  

to find T:

INSIGHT
We could just as well have determined T using m2g - T = m2a, though the algebra is a bit messier. Also, notice that 
a = 0 if m2 = 0, and that a = g  if m1 = 0, as expected. Similarly, T = 0 if either m1 or m2 is zero. This type of check, 
where you connect equations with physical situations, is one of the best ways to increase your understanding of physics.

PRACTICE PROBLEM
Find the acceleration and tension for the case m1 = 1.50 kg and m2 = 0.750 kg, and compare the tension to m2g.
[Answer: a = 3.27 m>s2, T = 4.91 N 6 m2g = 7.36 N]

Some related homework problems: Problem 38, Problem 41

  T = m1a

  m2g - T = m2a

  m2g = 1m1 + m22a

EXAMPLE 6-14	 ATWOOD’S MACHINE

Atwood’s machine consists of two masses connected by a string that passes over a pulley, as shown in the sketch. Find 
the acceleration of the masses for general m1 and m2, and evaluate for the specific case m1 = 3.1 kg, m2 = 4.4 kg.

PICTURE THE PROBLEM
Our sketch shows Atwood’s machine, along with our choice of coordinate directions for the two blocks. Note that both 
blocks accelerate in the positive x direction with accelerations of equal magnitude, a. From the free-body diagrams we 
can see that for mass 1 the weight is in the negative x direction and the tension is in the positive x direction. For mass 2, 
the tension is in the negative x direction and the weight is in the positive x direction. The tension has the same magni-
tude T for both masses, but their weights are different.

CONTINUED
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REASONING AND STRATEGY
To find the acceleration of the blocks, we follow the same strategy given in the previous Example. In particular, we start 
by applying Newton’s second law to each block individually, using the fact that a1,x = a2,x = a. This gives two equa-
tions, both involving the tension T and the acceleration a. Eliminating T allows us to solve for the acceleration.

Known	 Masses, m1 = 3.1 kg, m2 = 4.4 kg.
Unknown	 Acceleration of the masses, a = ?

SOLUTION

1.	 Begin by writing out the expression gF1,x = m1a. 	 aF1,x = T - m1 g = m1a 
Note that two forces act in the x direction: T  
(positive direction) and m1g  (negative direction): 

2.	 Next, write out gF2,x = m2a. The two forces acting in 	 aF2,x = m2 g - T = m2a 
the x direction in this case are m2g  (positive direction)  
and T (negative direction):

3.	 Sum the two relationships obtained above to eliminate T:	        T - m1g = m1a

	
m2g - T = m2a

1m2 - m12g = 1m1 + m22a

4.	 Solve for a:	 a = am2 - m1

m1 + m2
bg

5.	 To evaluate the acceleration, substitute numerical	  a = am2 - m1

m1 + m2
bg

values for the masses and for g:

	  = a4.4 kg - 3.1 kg

3.1 kg + 4.4 kg
b19.81 m>s22 = 1.7 m>s2

INSIGHT
Because m2 is greater than m1, we find that the acceleration is positive, meaning that the masses accelerate in the posi-
tive x direction. On the other hand, if m1 were greater than m2, we would find that a is negative, indicating that the 
masses accelerate in the negative x direction. Finally, if m1 = m2, we have a = 0, as expected.

PRACTICE PROBLEM — PREDICT/CALCULATE
(a) If m1 is increased by a small amount, does the acceleration of the blocks increase, decrease, or stay the same? Ex-
plain. (b) Check your answer to part (a) by evaluating the acceleration for m1 = 3.3 kg.  [Answer: (a) The acceleration 
decreases because the masses are more nearly balanced. (b) a = 1.4 m>s2]

Some related homework problems: Problem 40, Problem 41, Problem 43
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Enhance Your Understanding	 (Answers given at the end of the chapter)

4.	 Three boxes are connected by ropes 
and pulled across a smooth, horizon-
tal surface with an acceleration a, as 
shown in FIGURE 6-21. The force applied 
to the first box on the right is F, the 
tension in the rope connecting the first 

CONTINUED

T2 T1 F

a

▲  FIGURE 6-21  Enhance Your Understanding 4
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6-5  Circular Motion    177

6-5  Circular Motion
According to Newton’s second law, if no force acts on an object, it will move with con-
stant speed in a constant direction. A force is required to change the speed, the direc-
tion, or both. For example, if you drive a car with constant speed on a circular track, the 
direction of the car’s motion changes continuously. A force must act on the car to cause 
this change in direction. We would like to know two things about a force that causes 
circular motion: (i) What is its direction, and (ii) What is its magnitude?

First, let’s consider the direction of the force. Imagine swinging a ball tied to a 
string in a circle above your head, as shown in FIGURE 6-22. As you swing the ball, you 
feel a tension in the string pulling outward. Of course, on the other end of the string, 
where it attaches to the ball, the tension pulls inward, toward the center of the circle. 
Thus, the force the ball experiences is a force that is always directed toward the center 
of the circle. In summary:

To make an object move in a circle with constant speed, a force must act on it that is 
directed toward the center of the circle.

Because the ball is acted on by a force toward the center of the circle, it follows that 
it must be accelerating toward the center of the circle. This might seem odd at first: How 
can a ball that moves with constant speed have an acceleration? The answer is that 
acceleration is produced whenever the speed or direction of the velocity changes—and 
in circular motion, the direction changes continuously. The resulting center-directed 
acceleration is called centripetal acceleration (centripetal is from the Latin for 
“center seeking”).

Calculating the Centripetal Acceleration  Let’s calculate the magnitude of the cen-
tripetal acceleration, acp, for an object moving with a constant speed v in a circle of 
radius r. FIGURE 6-23 shows the circular path of an object, with the center of the circle 
at the origin. To calculate the acceleration at the top of the circle, at point P, we first 
calculate the average acceleration from point 1 to point 2:

	 a 
>
av =

∆v 
>

∆t
=

v 
>
2 - v 

>
1

∆t
	 6-10

The instantaneous acceleration at P is the limit of a 
>
av as points 1 and 2 move closer to P.

Referring to Figure 6-23, we see that v 
>
1 is at an angle u above the horizontal, and 

v 
>
2 is at an angle u below the horizontal. Both v 

>
1 and v 

>
2 have a magnitude v. There-

fore, we can write the two velocities in vector form as follows:

	  v 
>
1 = 1v cos u2xn + 1v sin u2yn

	  v 
>
2 = 1v cos u2xn + 1-v sin u2yn

Substituting these results into a 
>
av gives

	 a 
>
av =

v 
>
2 - v 

>
1

∆t
=

-2v sin u
∆t

 yn 	 6-11

Notice that a 
>
av points in the negative y direction—which, at point P, is toward the 

center of the circle.
To complete the calculation, we need to know the time, ∆t, it takes the object to 

go from point 1 to point 2. Since the object’s speed is v, and the distance from point 

T T

▲  FIGURE 6-22  Swinging a ball in a circle  
The tension in the string pulls outward on 
the person’s hand and pulls inward on the 
ball.

Big Idea 4 When an object 
moves in a circular path, it acceler-
ates toward the center of the path. 
As a result, circular motion requires a 
force directed toward the center.

u
u

uu

v2

>

v1

>

x

y

O

r

1
P

2

r

cand point 2, but
the direction of
motion is different.

A changing direction of motion
means a changing velocity —

and hence an acceleration.

The speed is the
same at point 1 c

▲  FIGURE 6-23  A particle moving with 
constant speed in a circular path cen-
tered on the origin  The speed of the 
particle is constant, but its velocity is 
constantly changing direction. Because 
the velocity changes, the particle is ac-
celerating.

and second boxes is T1, and the tension in the rope connecting the second and third 
boxes is T2. Rank the three forces 1F, T1, T22 in order of increasing magnitude. Indi-
cate ties where appropriate.

Section Review
•	 Objects connected by strings have the same acceleration. This implies certain values 

for the tension in the strings.

Ball Leaves Circular Track
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1 to point 2 is d = r(2u), where u is measured in radians (see Appendix, page A-2 for a 
discussion of radians and degrees), we find

	 ∆t =
d
v

=
2ru
v

	 6-12

Combining this result for ∆t  with the previous result for a 
>
av gives

	 a 
>
av =

-2v sin u
12ru>v2  yn = -

v

2

r
 asin u

u
byn 	 6-13

To find a 
>
 at point P, we let points 1 and 2 approach P, which means letting u go to zero. 

Table 6-2 shows that as u goes to zero 1u S 02, the ratio 1sin u2>u goes to 1:

	 lim
uS0

 
sin u
u

 = 1

It follows, then, that the instantaneous acceleration at point P is

	 a 
> = -

v

2

r
 yn = -acpyn 	 6-14

As mentioned, the direction of the acceleration is toward the center of the circle, and 
now we see that its magnitude is

	 acp =
v

2

r
	 6-15

We can summarize these results as follows:

•	 When an object moves in a circular path of radius r with constant speed v, its cen-
tripetal acceleration has a magnitude given by acp = v

2>r.

•	 A centripetal force must be applied to an object to give it circular motion. For an 
object of mass m, the net force acting on it must have a magnitude given by

	 ƒcp = macp = m 
v

2

r
	 6-16

	 This force must be directed toward the center of the circle.

The centripetal force, ƒcp, can be produced in any number of ways. For exam-
ple, ƒcp might be the tension in a string, as in the example with the ball, or it might 
be due to friction between tires and the road, as when a car turns a corner. In addition, 
ƒcp could be the force of gravity that causes a satellite, or the Moon, to orbit the Earth. 
Thus, ƒcp is a force that must be present to cause circular motion, but the specific cause 
of ƒcp varies from system to system. The centripetal force in a carnival ride is illustrated 
in FIGURE 6-24.

We now show how these results for centripetal force and centripetal acceleration 
can be applied in practice.

TABLE 6-2 
sin U
U

 for Values of U  

Approaching Zero

U, radians
sin U
U

1.00 0.841

0.500 0.959

0.250 0.990

0.125 0.997

0.0625 0.999

PHYSICS  
IN CONTEXT 
Looking Back

The derivation of the direction and mag-
nitude of centripetal acceleration makes 
extensive use of our knowledge of vectors 
from Chapter 3, and especially how to 
resolve vectors into components.

PHYSICS  
IN CONTEXT 
Looking Ahead

Circular motion comes up again in a num-
ber of physical systems, especially when 
we consider gravitational orbital motion 
in Chapter 12 and the Bohr model of the 
hydrogen atom in Chapter 31.

P R O B L E M - S O L V I N G  N O T E

Choice of Coordinate System: Circular 
Motion

In circular motion, it is convenient to 
choose the coordinate system so that one 
axis points toward the center of the circle. 
Then, we know that the acceleration in 
that direction must be acp = v

2>r.

◀  FIGURE 6-24  The people enjoying this carnival ride are experiencing a centripetal acceleration 
of roughly 10 m>s2 directed inward, toward the axis of rotation. The force needed to produce 
this acceleration, which keeps the riders moving in a circular path, is provided by the horizontal 
component of the tension in the chains.

EXAMPLE 6-15	 ROUNDING A CORNER

A 1200-kg car rounds a corner of radius r = 45 m. If the coefficient of static friction between the tires and the road is 
ms = 0.82, what is the greatest speed the car can have in the corner without skidding?

PICTURE THE PROBLEM
In the first sketch we show a bird’s-eye view of the car as it moves along its circular path. The next sketch shows the car 
moving directly toward the observer. Notice that we have chosen the positive x direction to point toward the center of 
the circular path, and the positive y axis to point vertically upward. We also indicate the three forces acting on the car: 
gravity, W 

>
= -Wyn = -mgyn ; the normal force, N 

>
= Nyn ; and the force of static friction, f 

>
s = msNxn .

CONTINUED
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